ADCME is a novel computational framework to solve inverse problems involving physical simulations and deep neural networks (DNNs). This paper benchmarks its capability to learn spatially-varying physical fields using DNNs. We demonstrate that our approach has superior accuracy compared to the discretization approach on a variety of problems, linear or nonlinear, static or dynamic. Technically, we formulate our inverse problem as a PDE-constrained optimization problem. We express both the numerical simulations and DNNs using computational graphs and therefore, we can calculate the gradients using reverse-mode automatic differentiation. We apply a physics constrained learning algorithm (PCL) to efficiently back-propagate gradients through iterative solvers for nonlinear equations. The open-source software which accompanies the present paper can be found at https://github.com/kailaix/ADCME.jl.
翻译:ADCME 是解决物理模拟和深神经网络(DNNs)的反向问题的新型计算框架。本文用DNNs基准其学习空间变化物理场的能力。 我们证明我们的方法比对各种问题(线性或非线性、静态或动态)的离散方法更准确。 从技术上讲,我们将我们的反向问题发展成一个受PDE制约的优化问题。我们用计算图表达数字模拟和DNNs,因此,我们可以使用反向模式自动区分来计算梯度。我们运用物理限制学习算法(PCL),通过非线性方程式的迭代解算法来有效反向推进梯度。本文所附的开源软件可以在 https://github.com/kailaix/ADCME.jl 上找到。