Traditional biometric systems have encountered significant setbacks due to various unavoidable factors, for example, face recognition-based biometrics fails due to the wearing of face masks and fingerprints create hygiene concerns. This paper proposes a novel lightweight cross-spectral vision transformer (CS-ViT) for biometric authentication using forehead subcutaneous vein patterns and periocular patterns, offering a promising alternative to traditional methods, capable of performing well even with the face masks and without any physical touch. The proposed framework comprises a cross-spectral dual-channel architecture designed to handle two distinct biometric traits and to capture inter-dependencies in terms of relative spectral patterns. Each channel consists of a Phase-Only Correlation Cross-Spectral Attention (POC-CSA) that captures their individual as well as correlated patterns. The computation of cross-spectral attention using POC extracts the phase correlation in the spatial features. Therefore, it is robust against the resolution/intensity variations and illumination of the input images, assuming both biometric traits are from the same person. The lightweight model is suitable for edge device deployment. The performance of the proposed algorithm was rigorously evaluated using the Forehead Subcutaneous Vein Pattern and Periocular Biometric Pattern (FSVP-PBP) database. The results demonstrated the superiority of the algorithm over state-of-the-art methods, achieving a remarkable classification accuracy of 98.8% with the combined vein and periocular patterns.
翻译:暂无翻译