This work deals with the problem of determining a non-homogeneous heat conductivity profile in a steady-state heat conduction boundary-value problem with mixed Dirichlet-Neumann boundary conditions over a bounded domain in $\mathbb{R}^n$, from the knowledge of the state over the whole domain. We develop a method based on a variational approach leading to an optimality equation which is then projected into a finite dimensional space. Discretization yields a linear although severely ill-posed equation which is then regularized via appropriate ad-hoc penalizers resulting a in a generalized Tikhonov-Phillips functional. No smoothness assumptions are imposed on the conductivity. Numerical examples for the case in which the conductivity can take only two prescribed values (a two-materials case) show that the approach is able to produce very good reconstructions of the exact solution.
翻译:这项工作涉及在稳定状态热导边界-价值问题中确定非异同热传导剖面的问题,从国家对整个域的了解出发,确定一个以美元为单位的封闭域的混合迪里赫莱特-尼乌曼边界条件,以美元为单位。我们开发了一种基于变式方法的方法,导致一个最佳的方程式,然后投射到一个有限的维空间。分解产生一个线性方程式,尽管严重不妥的方程式,然后通过适当的特设惩罚器进行正规化,从而形成一个普遍的Tikhonov-Phillips功能。对导体没有光滑度假设。在这样的案例中,导力只能取两个规定值(一个两件材料案例)的数值实例表明,该方程式能够很好地重建确切的解决方案。