Dialogue contradiction is a critical issue in open-domain dialogue systems. The contextualization nature of conversations makes dialogue contradiction detection rather challenging. In this work, we propose a benchmark for Contradiction Detection in Chinese Conversations, namely CDConv. It contains 12K multi-turn conversations annotated with three typical contradiction categories: Intra-sentence Contradiction, Role Confusion, and History Contradiction. To efficiently construct the CDConv conversations, we devise a series of methods for automatic conversation generation, which simulate common user behaviors that trigger chatbots to make contradictions. We conduct careful manual quality screening of the constructed conversations and show that state-of-the-art Chinese chatbots can be easily goaded into making contradictions. Experiments on CDConv show that properly modeling contextual information is critical for dialogue contradiction detection, but there are still unresolved challenges that require future research.
翻译:对话的矛盾是开放域对话体系中的一个关键问题。对话的背景化性质使得对话的发现有矛盾,因此具有挑战性。在这项工作中,我们提出了一个中国对话中矛盾检测基准,即CD Conv。它包含12K多方向对话,附加了三种典型的矛盾类别:即反对判决、角色混杂和历史矛盾。为了有效地构建CD Convv对话,我们设计了一系列自动对话生成方法,以模拟触发聊天机器人的常见用户行为来制造矛盾。我们对已建对话进行认真的人工质量筛选,并表明最先进的中国聊天机器人很容易被引向矛盾。CD Conv的实验表明,适当的背景信息建模对于对话的矛盾检测至关重要,但未来还需要研究一些尚未解决的挑战。