We study the following problem. Given a multiset $M$ of non-negative integers, decide whether there exist and, in the positive case, compute two non-trivial multisets whose Minkowski sum is equal to $M$. The Minkowski sum of two multisets A and B is a multiset containing all possible sums of any element of A and any element of B. This problem was proved to be NP-complete when multisets are replaced by sets. This version of the problem is strictly related to the factorization of boolean polynomials that turns out to be NP-complete as well. When multisets are considered, the problem is equivalent to the factorization of polynomials with non-negative integer coefficients. The computational complexity of both these problems is still unknown. The main contribution of this paper is a heuristic technique for decomposing multisets of non-negative integers. Experimental results show that our heuristic decomposes multisets of hundreds of elements within seconds independently of the magnitude of numbers belonging to the multisets. Our heuristic can be used also for factoring polynomials in N[x]. We show that, when the degree of the polynomials gets larger, our technique is much faster than the state-of-the-art algorithms implemented in commercial software like Mathematica and MatLab.
翻译:我们研究以下的问题。 在多设非负向整数的多设 $M$的情况下, 确定是否存在两个非三边多设, 其 Minkowski 和 Minkowski 和 Minkowski 和 两个多设 A 和 B 的 Minkowski 和 是 包含 A 和 B 中任何元素所有可能的总和的多设 的多设 。 当多设被数组取代时, 这个问题被证明为 NP 。 问题的这个版本严格地与布利安多级数的因子化有关, 而在正选的情况下, 布利安多级数的因子的因子化是 NPT 。 当考虑多设时, 问题与多设的多立项数的因子的因子化相等。 这两个问题的计算复杂性仍然未知。 本文的主要贡献是, 解析多设非负向多立式数组数的多立体数。 类似实验的结果表明, 我们的超立体解解将数数数数数数数的多立成数秒内成成数组, 在多立式的内, 我们使用的多立变数级数级算法中, 也显示多立为多立的因数级数级数级数级法, 。