This paper presents significantly improved deterministic algorithms for some of the key problems in the area of distributed graph algorithms, including network decomposition, hitting sets, and spanners. As the main ingredient in these results, we develop novel randomized distributed algorithms that we can analyze using only pairwise independence, and we can thus derandomize efficiently. As our most prominent end-result, we obtain a deterministic construction for $O(\log n)$-color $O(\log n \cdot \log\log\log n)$-strong diameter network decomposition in $\tilde{O}(\log^3 n)$ rounds. This is the first construction that achieves almost $\log n$ in both parameters, and it improves on a recent line of exciting progress on deterministic distributed network decompositions [Rozho\v{n}, Ghaffari STOC'20; Ghaffari, Grunau, Rozho\v{n} SODA'21; Chang, Ghaffari PODC'21; Elkin, Haeupler, Rozho\v{n}, Grunau FOCS'22].
翻译:本文介绍了分布式图表算法领域一些关键问题的确定性算法, 包括网络分解、 打击组和打字员。 作为这些结果的主要成份, 我们开发了新颖的随机分布式算法, 我们只能使用对称独立来分析, 这样我们就能有效地解密。 作为我们最突出的最终结果, 我们获得了一个以美元( log n) 计算的确定性计算法。 美元( log n) 彩色 $ O( log n \ cdot\ log\log\log n) $( $$) 强直径网络分解 $( logtilede{ O} ( log_ 3 n) 。 这是第一个在两个参数上几乎达到美元( $ log n) 的计算方法, 并且它改善了最近在确定式分布式网络分解剖式分布式( [Rozhov}, Ghaffari STOC'20 ; Ghaffari, Gruzhono, Rozho\\\ v} SODA'21; Chang, Ghaffari PoDC' 21; Elkin, Hazupler, Rozho\\\v} FONS.