In this work we refine the analysis of the distributed Laplacian solver recently established by Forster, Goranci, Liu, Peng, Sun, and Ye (FOCS '21), via the Ghaffari-Haeupler framework (SODA '16) of low-congestion shortcuts. Specifically, if $\epsilon > 0$ represents the error of the solver, we derive two main results. First, for any $n$-node graph $G$ with hop-diameter $D$ and treewidth bounded by $k$, we show the existence of a Laplacian solver with round complexity $O(n^{o(1)}kD \log(1/\epsilon))$ in the CONGEST model. For graphs with bounded treewidth this circumvents the notorious $\Omega(\sqrt{n})$ lower bound for "global" problems in general graphs. Moreover, following a recent line of work in distributed algorithms, we consider a hybrid communication model which enhances CONGEST with very limited global power in the form of the recently introduced node-capacitated clique. In this model, we show the existence of a Laplacian solver with round complexity $O(n^{o(1)} \log(1/\epsilon))$. The unifying thread of these results is an application of accelerated distributed algorithms for a congested variant of the standard part-wise aggregation problem that we introduce. This primitive constitutes the primary building block for simulating "local" operations on low-congestion minors, and we believe that this framework could be more generally applicable.
翻译:在这项工作中,我们改进了Forster、Goranci、Liu、Peng、Sun和Ye(FOCS '21)最近通过低消费捷径的Ghaffari-Haupler框架(SODA'16)对分布式拉普拉西亚求解器的分析。具体地说,如果$=epsilon > 0美元代表了解答器的错误,我们得出两个主要结果。首先,对于任何由Hop-diater $D1美元和树枝初级值受美元约束的以美元为单位的以美元/美元/美元/美元为单位的分布式图中以美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/立树枝为单位的分布式解析器,我们考虑的是一种混合通信模式,它能增强CONESTEST的循环复杂度1美元/logdddddd dro),它代表了我们最近引入了一种稳定型的直径的直径(美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元