We provide universally-optimal distributed graph algorithms for $(1+\varepsilon)$-approximate shortest path problems including shortest-path-tree and transshipment. The universal optimality of our algorithms guarantees that, on any $n$-node network $G$, our algorithm completes in $T \cdot n^{o(1)}$ rounds whenever a $T$-round algorithm exists for $G$. This includes $D \cdot n^{o(1)}$-round algorithms for any planar or excluded-minor network. Our algorithms never require more than $(\sqrt{n} + D) \cdot n^{o(1)}$ rounds, resulting in the first sub-linear-round distributed algorithm for transshipment. The key technical contribution leading to these results is the first efficient $n^{o(1)}$-competitive linear $\ell_1$-oblivious routing operator that does not require the use of $\ell_1$-embeddings. Our construction is simple, solely based on low-diameter decompositions, and -- in contrast to all known constructions -- directly produces an oblivious flow instead of just an approximation of the optimal flow cost. This also has the benefit of simplifying the interaction with Sherman's multiplicative weight framework [SODA'17] in the distributed setting and its subsequent rounding procedures.
翻译:我们为最短路径问题提供普遍最佳分布式图表算法,包括最短路径问题,最短路径问题,包括最短路径和转运。我们算法的普遍优化保证,在任何美元-诺德网络上,只要存在美元-美元四轮算法,我们的算法就以美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/