For IoT to reach its full potential, the sharing and reuse of information in different applications and across verticals is of paramount importance. However, there are a plethora of IoT platforms using different representations, protocols and interaction patterns. To address this issue, the Fed4IoT project has developed an IoT virtualization platform that, on the one hand, integrates information from many different source platforms and, on the other hand, makes the information required by the respective users available in the target platform of choice. To enable this, information is translated into a common, neutral exchange format. The format of choice is NGSI-LD, which is being standardized by the ETSI Industry Specification Group on Context Information Management (ETSI ISG CIM). Thing Visors are the components that translate the source information to NGSI-LD, which is then delivered to the target platform and translated into the target format. ThingVisors can be implemented by hand, but this requires significant human effort, especially considering the heterogeneity of low level information produced by a multitude of sensors. Thus, supporting the human developer and, ideally, fully automating the process of extracting and enriching data and translating it to NGSI-LD is a crucial step. Machine learning is a promising approach for this, but it typically requires large amounts of hand-labelled data for training, an effort that makes it unrealistic in many IoT scenarios. A programmatic labelling approach called knowledge infusion that encodes expert knowledge is used for matching a schema or ontology extracted from the data with a target schema or ontology, providing the basis for annotating the data and facilitating the translation to NGSI-LD.
翻译:为使IOT充分发挥其潜力,在不同应用和纵向之间共享和再利用信息至关重要。然而,使用不同表达、协议和互动模式的IOT平台数量过多,使用不同的表达、协议和互动模式。为解决这一问题,Fed4IOT项目开发了一个IOT虚拟化平台,一方面将来自许多不同源平台的信息整合起来,另一方面将用户所需要的信息在选择的目标平台中提供。为了做到这一点,信息被转化成一个共同的、中立的交换格式。选择的形式是NGSI-LD,该格式正在由ETI内部信息管理行业化规格小组(ETSI ISG CIM)标准化。为了解决这一问题,FID4I项目开发了一个将源信息转换到NGSI-LD虚拟平台的组件,然后将信息传输到目标平台,然后将目标平台上所需的信息转换成目标格式。Tivesors可以用手动执行,但这需要大量的人力努力,特别是考虑到由多个传感器生成的低水平信息的杂质性。因此,支持人际统计-LD(I)的开发者和(理想的)行业化数据分析流程中的一种典型的流程是将数据转换成一个稳定的智能数据流,而稳定的智能数据流化的流程需要一种稳定的学习的流程。在大量的流程中,这是一种稳定的数据流化数据流化的流程中,它提供一种稳定的数据流化数据流化数据流化的流程中,需要一种稳定的数据流化的流程。一个稳定的数据流化的流程。