Understanding treatment effect heterogeneity in observational studies is of great practical importance to many scientific fields because the same treatment may affect different individuals differently. Quantile regression provides a natural framework for modeling such heterogeneity. In this paper, we propose a new method for inference on heterogeneous quantile treatment effects that incorporates high-dimensional covariates. Our estimator combines a debiased $\ell_1$-penalized regression adjustment with a quantile-specific covariate balancing scheme. We present a comprehensive study of the theoretical properties of this estimator, including weak convergence of the heterogeneous quantile treatment effect process to the sum of two independent, centered Gaussian processes. We illustrate the finite-sample performance of our approach through Monte Carlo experiments and an empirical example, dealing with the differential effect of mothers' education on infant birth weights.


翻译:在观察研究中,了解治疗效果的异质性对于许多科学领域都具有非常重要的实际意义,因为同样的治疗可能对不同的个人产生不同的影响。量回归为模拟这种异质性提供了一个自然框架。在本文中,我们建议了一种新的方法,用以推断包含高维共变体的多种孔状处理效应。我们的估测器将一个不偏差的 $\ ell_1美元 的受罚回归调整与一个量化特定共变平衡方案结合起来。我们全面研究了这个估测器的理论特性,包括不同量子处理效果过程与两个独立的、以高斯为中心的过程之和的不完全融合。我们通过蒙特卡洛实验和一个经验实例,介绍了我们的做法的有限性抽样表现,涉及母亲教育对婴儿出生权重的不同影响。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
61+阅读 · 2020年3月4日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年3月25日
Arxiv
4+阅读 · 2018年4月26日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员