Current methods of multi-person pose estimation typically treat the localization and the association of body joints separately. It is convenient but inefficient, leading to additional computation and a waste of time. This paper, however, presents a novel framework PoseDet (Estimating Pose by Detection) to localize and associate body joints simultaneously at higher inference speed. Moreover, we propose the keypoint-aware pose embedding to represent an object in terms of the locations of its keypoints. The proposed pose embedding contains semantic and geometric information, allowing us to access discriminative and informative features efficiently. It is utilized for candidate classification and body joint localization in PoseDet, leading to robust predictions of various poses. This simple framework achieves an unprecedented speed and a competitive accuracy on the COCO benchmark compared with state-of-the-art methods. Extensive experiments on the CrowdPose benchmark show the robustness in the crowd scenes. Source code is available.


翻译:目前的多人估计方法通常分别处理机构联合体的定位和关联,这既方便又低效,导致额外的计算和浪费时间。然而,本文提出了一个新颖的框架PoseDet(通过探测估计Pose),以更高的推论速度同时进行本地化和联系机构联合体的配置和联系。此外,我们提议关键点认知构成嵌入,以代表其关键点位置的物体。拟议的嵌入包含语义和几何信息,使我们能够高效地获取有区别的和知情的特征。它用于PoseDet的候选人分类和身体联合定位,导致对各种形态的可靠预测。这一简单框架比最新方法在COCO基准上实现了前所未有的速度和竞争性的准确性。关于CCO基准的大规模实验显示人群场景的稳健性。有源代码。

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
306+阅读 · 2020年11月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
109+阅读 · 2020年3月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机视觉领域顶会CVPR 2018 接受论文列表
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Arxiv
27+阅读 · 2020年12月24日
Arxiv
5+阅读 · 2018年4月13日
Arxiv
7+阅读 · 2017年12月26日
VIP会员
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机视觉领域顶会CVPR 2018 接受论文列表
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Top
微信扫码咨询专知VIP会员