Spin systems are a powerful tool for modeling a wide range of physical systems. In this paper, we propose a novel framework for modeling spin systems using differentiable programming. Our approach enables us to efficiently simulate spin systems, making it possible to model complex systems at scale. Specifically, we demonstrate the effectiveness of our technique by applying it to three different spin systems: the Ising model, the Potts model, and the Cellular Potts model. Our simulations show that our framework offers significant speedup compared to traditional simulation methods, thanks to its ability to execute code efficiently across different hardware architectures, including Graphical Processing Units and Tensor Processing Units.
翻译:自旋系统是建模各种物理系统的强大工具。在本文中,我们提出了一种利用可微编程模型对自旋系统进行建模的新框架。我们的方法使我们能够高效地模拟自旋系统,从而能够在规模上建模复杂的系统。具体而言,我们通过将其应用于三个不同的自旋系统:Ising 模型、Potts 模型和 Cellular Potts 模型,证明了我们技术的有效性。我们的模拟表明,与传统的模拟方法相比,我们的框架能够在不同的硬件体系结构(包括图形处理单元和张量处理单元)上高效地执行代码,从而提供了显著的加速。