Adaptive learning technology solutions often use a learner model to trace learning and make pedagogical decisions. The present research introduces a formalized methodology for specifying learner models, Logistic Knowledge Tracing (LKT), that consolidates many extant learner modeling methods. The strength of LKT is the specification of a symbolic notation system for alternative logistic regression models that is powerful enough to specify many extant models in the literature and many new models. To demonstrate the generality of LKT, we fit 12 models, some variants of well-known models and some newly devised, to 6 learning technology datasets. The results indicated that no single learner model was best in all cases, further justifying a broad approach that considers multiple learner model features and the learning context. The models presented here avoid student-level fixed parameters to increase generalizability. We also introduce features to stand in for these intercepts. We argue that to be maximally applicable, a learner model needs to adapt to student differences, rather than needing to be pre-parameterized with the level of each student's ability.
翻译:适应性学习技术解决方案通常使用学习者模型来跟踪学习和作出教学决定。本研究采用了一种正规化的方法来具体确定学习者模型,即后勤知识追踪(LKT),该方法综合了许多现有学习者模型方法。LKT的优点在于为替代性后勤回归模型制定象征性的标记系统,该系统的功能足以在文献和许多新模型中指定许多现有模型。为了证明LKT的普遍性,我们把12个模型、一些已知模型的变异和一些新设计的模型与6个学习技术数据集相匹配。结果显示,没有任何单一学习者模型是最好的,进一步证明考虑多个学习者模型特点和学习背景的广泛方法是合理的。这里提出的模型避免了学生级固定参数,以提高通用性。我们还提出一些特征,用于这些拦截。我们主张,为了最充分的适用,学习者模型需要适应学生的差异,而不是需要根据每个学生的能力水平预先进行校准。