Probabilistic graphical models allow us to encode a large probability distribution as a composition of smaller ones. It is oftentimes the case that we are interested in incorporating in the model the idea that some of these smaller distributions are likely to be similar to one another. In this paper we provide an information geometric approach on how to incorporate this information, and see that it allows us to reinterpret some already existing models.
翻译:概率图形模型使我们能够将大概率分布编码为较小概率分布的构成。 我们往往有兴趣在模型中加入这样的观点,即其中一些较小分布可能彼此相似。 在本文中,我们提供了如何纳入这些信息的信息几何方法,并看到它使我们能够重新解释一些已经存在的模型。