Prevalence of deeper networks driven by self-attention is in stark contrast to underexplored point-based methods. In this paper, we propose groupwise self-attention as the basic block to construct our network: SepNet. Our proposed module can effectively capture both local and global dependencies. This module computes the features of a group based on the summation of the weighted features of any point within the group. For convenience, we generalize groupwise operations to assemble this module. To further facilitate our networks, we deepen and widen SepNet on the tasks of segmentation and classification respectively, and verify its practicality. Specifically, SepNet achieves state-of-the-art for the tasks of classification and segmentation on most of the datasets. We show empirical evidence that SepNet can obtain extra accuracy in classification or segmentation from increased width or depth, respectively.
翻译:由自我注意驱动的更深层次网络的普遍程度与探索不足的点基方法形成鲜明对比。 在本文中,我们建议集体自省作为构建我们网络的基本基石:SepNet。 我们提议的模块可以有效捕捉本地和全球依赖性。 这个模块根据组内任何点的加权特征的汇总计算一个组的特点。 为了方便起见,我们将分组操作用于组装这个模块。 为了进一步方便我们的网络,我们深化和扩大SepNet, 分别用于分解和分类任务, 并核实其实用性。 具体来说, SepNet在大多数数据集的分类和分解任务上达到了最先进的水平。 我们展示了经验证据, SepNet可以分别从更大的宽度或深度获得额外的分类或分解的精度。