We prove a decomposition result for a group $G$ acting strongly transitively on the Tits boundary of a Euclidean building. As an application we provide a local to global result for discrete Euclidean buildings, which generalizes results in the locally compact case by Caprace--Ciobotaru and Burger--Mozes. Let $X$ be a Euclidean building without cone factors. If a group $G$ of automorphisms of $X$ acts strongly transitively on the spherical building at infinity $\partial X$, then the $G$-stabilizer of every affine apartment in $X$ contains all reflections along thick walls. In particular $G$ acts strongly transitively on $X$ if $X$ is simplicial and thick.
翻译:我们证明一个集团的分解结果,这个集团的G$在欧clidean大楼的Tits边界上大力过渡。作为一种应用程序,我们为离散的欧clidean大楼提供了局部到全球的结果,它概括了Caprace-Ciobotaru和Burger-Mozes在当地的紧凑情况。让X$成为没有锥体因素的欧Clidean大楼。如果一个集团的X美元自动变化性美元在无限值为1美元/部分X美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元