The COVID-19 pandemic has caused international social tension and unrest. Besides the crisis itself, there are growing signs of rising conflict potential of societies around the world. Indicators of global mood changes are hard to detect and direct questionnaires suffer from social desirability biases. However, so-called implicit methods can reveal humans intrinsic desires from e.g. social media texts. We present psychologically validated social unrest predictors and replicate scalable and automated predictions, setting a new state of the art on a recent German shared task dataset. We employ this model to investigate a change of language towards social unrest during the COVID-19 pandemic by comparing established psychological predictors on samples of tweets from spring 2019 with spring 2020. The results show a significant increase of the conflict indicating psychometrics. With this work, we demonstrate the applicability of automated NLP-based approaches to quantitative psychological research.
翻译:COVID-19大流行造成了国际社会紧张和动荡,除了危机本身外,世界各地社会冲突潜力不断上升的迹象也越来越多,全球情绪变化的指标难以检测,直接的调查表受到社会可取性的偏见,然而,所谓的隐含方法可以从社交媒体文本等材料中揭示人类的内在愿望,我们提出经心理验证的社会动荡预测器,复制可缩放和自动预测,为德国最近共享的任务数据集建立新状态,我们利用这一模式调查在COVID-19大流行期间,语言向社会动乱转变,比较2019年春季至2020年春季的推特样本的既定心理预测器,结果显示冲突大量增加,表明心理计量。我们通过这项工作,展示了以自动NLP为基础的方法对定量心理研究的适用性。