Forensic examination of evidence like firearms and toolmarks, traditionally involves a visual and therefore subjective assessment of similarity of two questioned items. Statistical models are used to overcome this subjectivity and allow specification of error rates. These models are generally quite complex and produce abstract results at different levels of the analysis. Presenting such metrics and complicated results to examiners is challenging, as examiners generally do not have substantial statistical training to accurately interpret results. This creates distrust in statistical modelling and lowers the rate of acceptance of more objective measures that the discipline at large is striving for. We present an inferential framework for assessing the model and its output. The framework is designed to calibrate trust in forensic experts by bridging the gap between domain specific knowledge and predictive model results, allowing forensic examiners to validate the claims of the predictive model while critically assessing results.


翻译:对火器和工具标记等证据的法证检查,传统上涉及对两个受质疑物品的相似性进行直观和主观评估,使用统计模型来克服这种主观性,并允许说明误差率,这些模型一般相当复杂,在不同的分析层次上产生抽象结果,向审查人员提出这类指标和复杂结果具有挑战性,因为审查人员一般没有进行大量的统计培训来准确解释结果,这在统计建模方面造成了不信任,降低了一般学科努力采取的更客观措施的接受率。我们提出了一个评估模型及其产出的推断框架。框架的目的是通过缩小特定领域知识和预测模型结果之间的差距,使法医检查人员在严格评估结果的同时,验证预测模型的主张。

0
下载
关闭预览

相关内容

专知会员服务
94+阅读 · 2021年8月28日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
30+阅读 · 2021年7月7日
Arxiv
5+阅读 · 2020年8月18日
Arxiv
12+阅读 · 2019年2月26日
Arxiv
8+阅读 · 2018年3月17日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员