We consider the task of recovering a Sobolev function on a connected compact Riemannian manifold $M$ when given a sample on a finite point set. We prove that the quality of the sample is given by the $L_\gamma(M)$-average of the geodesic distance to the point set and determine the value of $\gamma\in (0,\infty]$. This extends our findings on bounded convex domains [arXiv:2009.11275, 2020]. Further, a limit theorem for moments of the average distance to a set consisting of i.i.d. uniform points is proven. This yields that a random sample is asymptotically as good as an optimal sample in precisely those cases with $\gamma<\infty$. In particular, we obtain that cubature formulas with random nodes are asymptotically as good as optimal cubature formulas if the weights are chosen correctly. This closes a logarithmic gap left open by Ehler, Gr\"af and Oates [Stat. Comput., 29:1203-1214, 2019].
翻译:我们考虑在连接的里曼尼方块上恢复Sobolev 函数的任务。 当给定一个定点时, 当给定一个定点的样本时, 我们证明样本的质量是由测地距离平均的 $L gamma( M) 给定到定点的点数, 并且确定 $\ gamma\ in ( 0,\ infty) $ 的值。 这扩大了我们对连接的锥形域[arXiv: 2009.11275, 2020] 的调查结果。 此外, 也证明了平均距离到由 i. d. 统一点构成的一组数的时数的限。 由此得出的结果是, 随机抽样在精确情况下, 以$\ gamma / inty 表示的样数和最佳样本一样好。 特别是, 我们发现, 如果选择正确, 重量, 则带有随机结点的幼色公式与最佳烹调一样好。 这缩小了由 Ehler、 Gr\\\ 和 Oates 留下的对数差距。 [Stat., 29: 1203, 201- 1214] 。