Physics-informed neural networks (PINNs) provide a transformative development for approximating the solutions to partial differential equations (PDEs). This work proposes a coupled physics-informed neural network (C-PINN) for the nonhomogeneous PDEs with unknown dynamical source terms, which is used to describe the systems with external forces and cannot be well approximated by the existing PINNs. In our method, two neural networks, NetU and NetG, are proposed. NetU is constructed to generate a quasi-solution satisfying PDEs under study. NetG is used to regularize the training of NetU. Then, the two networks are integrated into a data-physics-hybrid cost function. Finally, we propose a hierarchical training strategy to optimize and couple the two networks. The performance of C-PINN is proved by approximating several classical PDEs.
翻译:物理知情神经网络(PINNs)为接近局部差异方程式(PDEs)的解决方案提供了一种变革性发展。这项工作提议为非相形色色的PDEs建立一个同步的物理知情神经网络(C-PINN),使用未知的动态源术语来描述这些系统,用外部力量描述这些系统,现有PINNs无法十分接近。在我们的方法中,提出了两个神经网络(NetU和NetG)的建议。NetU的建造是为了在研究中产生一个准溶解满意的PDEs。NetG用来规范NetU的培训。然后,两个网络被纳入数据物理-杂质成本功能。最后,我们提出了优化和合并两个网络的分级培训战略。C-PINN的绩效通过对几个古典PDE的接近而得到证明。