Humanitarian challenges, including natural disasters, food insecurity, climate change, racial and gender violence, environmental crises, the COVID-19 coronavirus pandemic, human rights violations, and forced displacements, disproportionately impact vulnerable communities worldwide. According to UN OCHA, 235 million people will require humanitarian assistance in 20211 . Despite these growing perils, there remains a notable paucity of data science research to scientifically inform equitable public policy decisions for improving the livelihood of at-risk populations. Scattered data science efforts exist to address these challenges, but they remain isolated from practice and prone to algorithmic harms concerning lack of privacy, fairness, interpretability, accountability, transparency, and ethics. Biases in data-driven methods carry the risk of amplifying inequalities in high-stakes policy decisions that impact the livelihood of millions of people. Consequently, proclaimed benefits of data-driven innovations remain inaccessible to policymakers, practitioners, and marginalized communities at the core of humanitarian actions and global development. To help fill this gap, we propose the Data-driven Humanitarian Mapping Research Program, which focuses on developing novel data science methodologies that harness human-machine intelligence for high-stakes public policy and resilience planning.


翻译:人道主义挑战,包括自然灾害、粮食无保障、气候变化、种族和性别暴力、环境危机、COVID-19 Corona病毒流行病、侵犯人权和强迫流离失所,对全世界弱势社区的影响格外严重。据人道协调厅称,2021年将有2.35亿人需要人道主义援助。尽管这些危险日益严重,但数据科学研究仍然明显缺乏,无法从科学上为改善风险人口生计的公平公共政策决策提供科学依据。为应对这些挑战,数据科学工作分散,但它们仍然与实践隔绝,容易在缺乏隐私、公平性、可解释性、问责制、透明度和道德方面受到算法上的伤害。数据驱动方法中的偏见有可能扩大影响数百万人生计的高层决策中的不平等。因此,决策者、从业者和处于人道主义行动和全球发展核心的边缘化社区仍然无法获得数据驱动创新的好处。为填补这一空白,我们提议由数据驱动的人道主义绘图研究方案,重点是开发新的数据科学方法,利用人力资源情报制定公共政策和复原力规划。

0
下载
关闭预览

相关内容

【ACM Multimedia2021-tutorial】可信赖多媒体分析
专知会员服务
17+阅读 · 2021年10月20日
【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
62+阅读 · 2021年8月20日
专知会员服务
50+阅读 · 2021年8月8日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
10+阅读 · 2020年11月26日
VIP会员
相关资讯
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员