Many real-world tasks include some kind of parameter estimation, i.e., determination of a parameter encoded in a probability distribution. Often, such probability distributions arise from stochastic processes. For a stationary stochastic process with temporal correlations, the random variables that constitute it are identically distributed but not independent. This is the case, for instance, for quantum continuous measurements. In this paper we prove two fundamental results concerning the estimation of parameters encoded in a memoryful stochastic process. First, we show that for processes with finite Markov order, the Fisher information is always asymptotically linear in the number of outcomes, and determined by the conditional distribution of the process' Markov order. Second, we prove with suitable examples that correlations do not necessarily enhance the metrological precision. In fact, we show that unlike for entropic information quantities, in general nothing can be said about the sub- or super-additivity of the joint Fisher information, in the presence of correlations. We discuss how the type of correlations in the process affects the scaling. We then apply these results to the case of thermometry on a spin chain.
翻译:许多真实世界的任务包括某种参数估计, 即确定在概率分布中编码的参数。 通常, 这种概率分布来自随机过程。 对于具有时间相关性的静止随机变量, 构成该参数的随机变量分布相同, 但并不独立。 例如量的连续测量就是这种情况。 在本文中, 我们证明两个基本结果与在记忆性随机分析过程中编码的参数估计有关。 首先, 我们显示, 对于有有限马可夫顺序的流程, 渔业信息总是在结果数量上处于静态线性线性, 并且由进程马可夫顺序的有条件分布决定。 其次, 我们用合适的实例证明, 相关关系不一定能提高计量的精确性。 事实上, 我们表明, 与昆虫信息数量不同, 一般来说, 在存在关联性的情况下, 无法对联合渔业信息的子或超增加性进行评论。 我们讨论该流程中的关联性类型是如何影响缩放的 。 我们随后将这些结果应用到旋转链的温度测量中 。