Soft robotic grippers facilitate contact-rich manipulation, including robust grasping of varied objects. Yet the beneficial compliance of a soft gripper also results in significant deformation that can make precision manipulation challenging. We present visual pressure estimation & control (VPEC), a method that infers pressure applied by a soft gripper using an RGB image from an external camera. We provide results for visual pressure inference when a pneumatic gripper and a tendon-actuated gripper make contact with a flat surface. We also show that VPEC enables precision manipulation via closed-loop control of inferred pressure images. In our evaluation, a mobile manipulator (Stretch RE1 from Hello Robot) uses visual servoing to make contact at a desired pressure; follow a spatial pressure trajectory; and grasp small low-profile objects, including a microSD card, a penny, and a pill. Overall, our results show that visual estimates of applied pressure can enable a soft gripper to perform precision manipulation.
翻译:软性机器人抓抓器可以促进接触丰富的操纵,包括强力捕捉各种物体。 但是,软性抓抓器的有利合规性也导致显著变形,使得精密操作具有挑战性。 我们展示了视觉压力估计和控制(VPEC),这是用外部摄像头的 RGB 图像推断软性抓抓器施压的方法。 当一个气压抓器和一个有倾向作用的抓抓器与平面接触时,我们提供了视觉压力推断结果。 我们还显示, VPEC 能够通过闭环控制推断的压力图像进行精确操纵。 在我们的评估中,一个移动操纵器(Hello Robot的Strech RE1) 使用视觉预感按所期望的压力进行接触; 跟踪空间压力轨迹; 并捕捉小的低调对象, 包括微SD卡、 一便士和一药片。 总之,我们的结果显示,对应用压力的视觉估计使软性握手能够进行精确操纵。