Deep learning has become an increasingly popular and powerful option for modern pattern recognition systems. However, many deep neural networks have millions to billions of parameters, making them untenable for real-world applications with constraints on memory or latency. As a result, powerful network compression techniques are a must for the widespread adoption of deep learning. We present DECORE, a reinforcement learning approach to automate the network compression process. Using a simple policy gradient method to learn which neurons or channels to keep or remove, we are able to achieve compression rates 3x to 5x greater than contemporary approaches. In contrast with other architecture search methods, DECORE is simple and quick to train, requiring only a few hours of training on 1 GPU. When applied to standard network architectures on different datasets, our approach achieves 11x to 103x compression on different architectures while maintaining accuracies similar to those of the original, large networks.
翻译:深层学习已成为现代模式识别系统越来越受欢迎和强大的选择。 然而,许多深层神经网络拥有数亿至数十亿参数,因此无法用于对记忆或潜伏力有限制的现实世界应用。 因此,强大的网络压缩技术是广泛采用深层学习所必须的。 我们提出DECORE,这是网络压缩过程自动化的一种强化学习方法。 使用简单的政策梯度方法来了解哪些神经元或渠道要保留或删除,我们能够达到比当代方法高3x至5x的压缩率。 与其他建筑搜索方法相比,DECORE简单而快速地培训,只需要在1个GPU上培训几个小时。 当应用到不同数据集的标准网络结构时,我们的方法在不同的结构上实现了11x至103x压缩,同时保持与原始的大网络相似的精确度。