Deep learning has become an increasingly popular and powerful option for modern pattern recognition systems. However, many deep neural networks have millions to billions of parameters, making them untenable for real-world applications with constraints on memory or latency. As a result, powerful network compression techniques are a must for the widespread adoption of deep learning. We present DECORE, a reinforcement learning approach to automate the network compression process. Using a simple policy gradient method to learn which neurons or channels to keep or remove, we are able to achieve compression rates 3x to 5x greater than contemporary approaches. In contrast with other architecture search methods, DECORE is simple and quick to train, requiring only a few hours of training on 1 GPU. When applied to standard network architectures on different datasets, our approach achieves 11x to 103x compression on different architectures while maintaining accuracies similar to those of the original, large networks.


翻译:深层学习已成为现代模式识别系统越来越受欢迎和强大的选择。 然而,许多深层神经网络拥有数亿至数十亿参数,因此无法用于对记忆或潜伏力有限制的现实世界应用。 因此,强大的网络压缩技术是广泛采用深层学习所必须的。 我们提出DECORE,这是网络压缩过程自动化的一种强化学习方法。 使用简单的政策梯度方法来了解哪些神经元或渠道要保留或删除,我们能够达到比当代方法高3x至5x的压缩率。 与其他建筑搜索方法相比,DECORE简单而快速地培训,只需要在1个GPU上培训几个小时。 当应用到不同数据集的标准网络结构时,我们的方法在不同的结构上实现了11x至103x压缩,同时保持与原始的大网络相似的精确度。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
深度学习搜索,Exploring Deep Learning for Search
专知会员服务
58+阅读 · 2020年5月9日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
94+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Deep Reinforcement Learning 深度增强学习资源
数据挖掘入门与实战
7+阅读 · 2017年11月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Compression of Deep Learning Models for Text: A Survey
Arxiv
12+阅读 · 2019年3月14日
Arxiv
7+阅读 · 2018年12月26日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Arxiv
13+阅读 · 2018年1月20日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Deep Reinforcement Learning 深度增强学习资源
数据挖掘入门与实战
7+阅读 · 2017年11月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员