Frequent false alarms impede the promotion of unsupervised anomaly detection algorithms in industrial applications. Potential characteristics of false alarms depending on the trained detector are revealed by investigating density probability distributions of prediction scores in the out-of-distribution anomaly detection tasks. An SVM-based classifier is exploited as a post-processing module to identify false alarms from the anomaly map at the object level. Besides, a sample synthesis strategy is devised to incorporate fuzzy prior knowledge on the specific application in the anomaly-free training dataset. Experimental results illustrate that the proposed method comprehensively improves the performances of two segmentation models at both image and pixel levels on two industrial applications.
翻译:经常的假警报妨碍在工业应用中推广不受监督的异常现象探测算法;通过调查分配外异常探测任务预测分数的密度概率分布,揭示出取决于受过训练的探测器的虚假警报的潜在特征;利用SVM分类器作为后处理模块,在物体一级从异常图中识别假警报;此外,还设计了一个样本合成战略,在无异常培训数据集中纳入关于具体应用的模糊的先前知识;实验结果显示,拟议的方法全面改进了两个工业应用图象和像素水平两个分解模型的性能。