Research on group activity recognition mostly leans on the standard two-stream approach (RGB and Optical Flow) as their input features. Few have explored explicit pose information, with none using it directly to reason about the persons interactions. In this paper, we leverage the skeleton information to learn the interactions between the individuals straight from it. With our proposed method GIRN, multiple relationship types are inferred from independent modules, that describe the relations between the body joints pair-by-pair. Additionally to the joints relations, we also experiment with the previously unexplored relationship between individuals and relevant objects (e.g. volleyball). The individuals distinct relations are then merged through an attention mechanism, that gives more importance to those individuals more relevant for distinguishing the group activity. We evaluate our method in the Volleyball dataset, obtaining competitive results to the state-of-the-art. Our experiments demonstrate the potential of skeleton-based approaches for modeling multi-person interactions.


翻译:关于群体活动认识的研究大多注重标准双流方法(RGB和光学流动)作为输入特征。很少有人探讨过明确显示信息,没有直接利用信息来解释个人互动情况。在本文中,我们利用骨架信息来直接了解个人之间的互动情况。我们提议的GIRN方法,从独立模块中推断出多种关系类型,描述身体对对对对对对对对关系。除了这些连接关系外,我们还试验了以前未探索的个人与相关对象(如排球)之间的关系。个人的不同关系随后通过关注机制被合并,从而更加重视那些与区分群体活动更相关的个人。我们在Volleyball数据集中评估了我们的方法,从中获得了最新技术的竞争结果。我们的实验展示了以骨架为基础模拟多人互动的潜力。

1
下载
关闭预览

相关内容

Group一直是研究计算机支持的合作工作、人机交互、计算机支持的协作学习和社会技术研究的主要场所。该会议将社会科学、计算机科学、工程、设计、价值观以及其他与小组工作相关的多个不同主题的工作结合起来,并进行了广泛的概念化。官网链接:https://group.acm.org/conferences/group20/
【Cell】神经算法推理,Neural algorithmic reasoning
专知会员服务
28+阅读 · 2021年7月16日
【AAAI2021】知识增强的视觉-语言预训练技术 ERNIE-ViL
专知会员服务
25+阅读 · 2021年1月29日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
计算机视觉领域顶会CVPR 2018 接受论文列表
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Arxiv
3+阅读 · 2017年11月21日
VIP会员
相关资讯
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
计算机视觉领域顶会CVPR 2018 接受论文列表
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Top
微信扫码咨询专知VIP会员