This paper presents a comprehensive survey of low-light image and video enhancement. We begin with the challenging mixed over-/under-exposed images, which are under-performed by existing methods. To this end, we propose two variants of the SICE dataset named SICE_Grad and SICE_Mix. Next, we introduce Night Wenzhou, a large-scale, high-resolution video dataset, to address the issue of the lack of a low-light video dataset that discount the use of low-light image enhancement (LLIE) to videos. Our Night Wenzhou dataset is challenging since it consists of fast-moving aerial scenes and streetscapes with varying illuminations and degradation. We conduct extensive key technique analysis and experimental comparisons for representative LLIE approaches using these newly proposed datasets and the current benchmark datasets. Finally, we address unresolved issues and propose future research topics for the LLIE community. Our datasets are available at https://github.com/ShenZheng2000/LLIE_Survey.
翻译:本文介绍对低光图像和视频增强的综合调查。 我们首先介绍具有挑战性的超光/低光图像,现有方法未充分利用这些图像。 为此,我们提议使用SICE_Grad和SICE_Mix两套SICE数据集的变体。接下来,我们介绍一个大型高分辨率视频数据集Night Wenzhou,以解决缺少低光视频数据集的问题,将低光图像增强(LLIE)的使用情况忽略到视频中。我们的夜温州数据集具有挑战性,因为它包括快速移动的空中场景和街道景,其污染和退化程度各不相同。我们利用这些新提议的数据集和当前基准数据集对具有代表性的LIEE方法进行了广泛的关键技术分析和实验性比较。最后,我们处理未决问题,并为LIEE社区提出未来的研究课题。我们的数据集可在https://github.com/ShenZheng2000/LIE_Suvey查阅。