In multi-label learning, the issue of missing labels brings a major challenge. Many methods attempt to recovery missing labels by exploiting low-rank structure of label matrix. However, these methods just utilize global low-rank label structure, ignore both local low-rank label structures and label discriminant information to some extent, leaving room for further performance improvement. In this paper, we develop a simple yet effective discriminant multi-label learning (DM2L) method for multi-label learning with missing labels. Specifically, we impose the low-rank structures on all the predictions of instances from the same labels (local shrinking of rank), and a maximally separated structure (high-rank structure) on the predictions of instances from different labels (global expanding of rank). In this way, these imposed low-rank structures can help modeling both local and global low-rank label structures, while the imposed high-rank structure can help providing more underlying discriminability. Our subsequent theoretical analysis also supports these intuitions. In addition, we provide a nonlinear extension via using kernel trick to enhance DM2L and establish a concave-convex objective to learn these models. Compared to the other methods, our method involves the fewest assumptions and only one hyper-parameter. Even so, extensive experiments show that our method still outperforms the state-of-the-art methods.


翻译:在多标签学习中,缺失标签的问题带来了重大挑战。许多方法试图通过利用低等级标签矩阵结构来恢复缺失标签。然而,这些方法只是利用全球低等级标签结构,在某种程度上忽视当地低等级标签结构和标签差异信息,为进一步改进绩效留有余地。在本文中,我们开发了一个简单而有效的多标签差异学习(DM2L)方法,用于多标签缺失的多标签学习。具体地说,我们把低等级结构强加给同一标签(地方排名缩缩缩)中的所有事件预测,以及从不同标签(全球排名扩大)中预测事件的最大分离结构(高等级结构)。这样,这些强加的低等级结构可以帮助建模本地和全球低等级标签结构,而强加的高等级结构有助于提供更深层次的分歧性。我们随后的理论分析也支持这些直觉。此外,我们通过使用内核游戏的技巧提供非线性扩展的架构(地方排名缩缩缩缩),并在不同标签(全球排名扩大级别)预测中设置一个最大程度分离的结构(高等级结构 ),, 这些强加的低等级结构可以帮助构建本地的模型, 展示我们的其他方法。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
专知会员服务
123+阅读 · 2020年9月8日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员