Many processes in psychology are complex, such as dyadic interactions between two interacting partners (e.g. patient-therapist, intimate relationship partners). Nevertheless, many basic questions about interactions are difficult to investigate because dyadic processes can be within a person and between partners, they are based on multimodal aspects of behavior and unfold rapidly. Current analyses are mainly based on the behavioral coding method, whereby human coders annotate behavior based on a coding schema. But coding is labor-intensive, expensive, slow, focuses on few modalities. Current approaches in psychology use LIWC for analyzing couples' interactions. However, advances in natural language processing such as BERT could enable the development of systems to potentially automate behavioral coding, which in turn could substantially improve psychological research. In this work, we train machine learning models to automatically predict positive and negative communication behavioral codes of 368 German-speaking Swiss couples during an 8-minute conflict interaction on a fine-grained scale (10-seconds sequences) using linguistic features and paralinguistic features derived with openSMILE. Our results show that both simpler TF-IDF features as well as more complex BERT features performed better than LIWC, and that adding paralinguistic features did not improve the performance. These results suggest it might be time to consider modern alternatives to LIWC, the de facto linguistic features in psychology, for prediction tasks in couples research. This work is a further step towards the automated coding of couples' behavior which could enhance couple research and therapy, and be utilized for other dyadic interactions as well.


翻译:心理学的许多过程是复杂的,例如两个互动伙伴(如病人-治疗师、亲密关系伙伴)之间的双轨互动。然而,关于互动的许多基本问题很难调查,因为二轨过程可以是个人内部的,也可以是伙伴之间的,它们基于行为多式方面,并迅速展开。目前的分析主要基于行为编码方法,即人类编码员根据编码模式对行为进行批注。但编码是劳力密集、昂贵、缓慢的,侧重于很少的方式。目前心理学互动的方法使用双轨语言分析配偶互动。然而,自然语言处理的进展,如BERT等,可以使系统的发展有可能自动化的行为编码,而这反过来可以大大改善心理研究。在这项工作中,我们培训机器学习模型,自动预测在8分钟的冲突互动中讲德语的368对德语的瑞士夫妇的积极和消极的交流行为代码。使用精细的语系(10秒序列),并注重语言特征和语言特征与开放SMILE分析。我们的结果显示,在自然语言处理中,简化的TF-ICF处理方式处理方法可以使夫妇的系统特征更能自动地进行自动化的操作,作为比较复杂的业绩特征,可以改进。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
专知会员服务
31+阅读 · 2021年6月12日
最新《Transformers模型》教程,64页ppt
专知会员服务
306+阅读 · 2020年11月26日
专知会员服务
31+阅读 · 2020年10月13日
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
BERT源码分析PART I
AINLP
38+阅读 · 2019年7月12日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Imitation by Predicting Observations
Arxiv
4+阅读 · 2021年7月8日
Arxiv
6+阅读 · 2019年9月4日
VIP会员
相关VIP内容
专知会员服务
31+阅读 · 2021年6月12日
最新《Transformers模型》教程,64页ppt
专知会员服务
306+阅读 · 2020年11月26日
专知会员服务
31+阅读 · 2020年10月13日
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
BERT源码分析PART I
AINLP
38+阅读 · 2019年7月12日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员