We consider the problem of estimating common community structures in multi-layer stochastic block models, where each single layer may not have sufficient signal strength to recover the full community structure. In order to efficiently aggregate signal across different layers, we argue that the sum-of-squared adjacency matrices contains sufficient signal even when individual layers are very sparse. Our method features a bias-removal step that is necessary when the squared noise matrices may overwhelm the signal in the very sparse regime. The analysis of our method uses several novel tail probability bounds for matrix linear combinations with matrix-valued coefficients and matrix-valued quadratic forms, which may be of independent interest. The performance of our method and the necessity of bias removal is demonstrated in synthetic data and in microarray analysis about gene co-expression networks.
翻译:我们考虑了在多层随机区块模型中估计共同社区结构的问题,在这个模型中,每一层可能没有足够的信号强度来恢复整个社区结构。为了有效地综合不同层之间的信号,我们认为,即使单个层非常稀少,相称的相邻基体总和也包含足够的信号。我们的方法具有消除偏差的必要步骤,在平方噪音基体可能压倒非常稀少的系统中的信号时,这种步骤是必要的。我们的方法分析使用了几种新的尾巴概率界限,将矩阵线性组合与矩阵值系数和矩阵值的二次方形形式结合起来,这可能具有独立的兴趣。我们的方法和消除偏差的必要性在合成数据和关于基因共表达网络的微阵列分析中得到了证明。