We introduce a modality-agnostic neural compression algorithm based on a functional view of data and parameterised as an Implicit Neural Representation (INR). Bridging the gap between latent coding and sparsity, we obtain compact latent representations non-linearly mapped to a soft gating mechanism. This allows the specialisation of a shared INR network to each data item through subnetwork selection. After obtaining a dataset of such latent representations, we directly optimise the rate/distortion trade-off in a modality-agnostic space using neural compression. Variational Compression of Implicit Neural Representations (VC-INR) shows improved performance given the same representational capacity pre quantisation while also outperforming previous quantisation schemes used for other INR techniques. Our experiments demonstrate strong results over a large set of diverse modalities using the same algorithm without any modality-specific inductive biases. We show results on images, climate data, 3D shapes and scenes as well as audio and video, introducing VC-INR as the first INR-based method to outperform codecs as well-known and diverse as JPEG 2000, MP3 and AVC/HEVC on their respective modalities.
翻译:我们根据对数据和参数的功能观,采用基于数据和参数的隐性神经表示法(INR),采用模式-神经表示法(INR),采用模式-神经表示法(INR),根据对数据和参数的功能观,采用模式-神经表示法(INR),采用模式-神经表示法(INR),采用模式-神经表示法(VC-INR),缩小潜在编码和孔隙之间的差距,我们获得不线性地向软格机制绘制的紧凑潜在代表法(不线性地),获得不线性地向软格机制绘制的不线性图示;通过子网络选择,使共享的IRR网络对每个数据项进行专业化;在获得关于这种潜在表示法的数据集后,我们直接优化在模式-神经压缩模式-神经代表法(VC-INR)中的比率/扭曲取舍。 隐性神经内隐形神经代表法(VC-INR)的变异的首一种方法,在2000年的MPC/不同模式上,我们发现图像、气候、变异的图像和图像。