Machine Learning models are prone to fail when test data are different from training data, a situation often encountered in real applications known as distribution shift. While still valid, the training-time knowledge becomes less effective, requiring a test-time adaptation to maintain high performance. Following approaches that assume batch-norm layer and use their statistics for adaptation, we propose a Test-Time Adaptation with Principal Component Analysis (TTAwPCA), which presumes a fitted PCA and adapts at test time a spectral filter based on the singular values of the PCA for robustness to corruptions. TTAwPCA combines three components: the output of a given layer is decomposed using a Principal Component Analysis (PCA), filtered by a penalization of its singular values, and reconstructed with the PCA inverse transform. This generic enhancement adds fewer parameters than current methods. Experiments on CIFAR-10-C and CIFAR- 100-C demonstrate the effectiveness and limits of our method using a unique filter of 2000 parameters.
翻译:当测试数据不同于培训数据时,机器学习模型容易失败,这是在被称为分布转移的实际应用中经常遇到的一种情况,虽然培训时间知识仍然有效,但要求测试时间适应以保持高性能。根据采用分批北层并使用其统计数据进行适应的方法,我们提议采用主要成分分析(TTAWPCA)的测试时间适应,该分析假设一个适合的五氯苯甲醚,并在测试时间根据五氯苯甲醚的单值对腐败进行调整。TAWPCA综合了三个组成部分:一个特定层的输出通过主要成分分析(PCA)分解,通过对其单值的处罚加以过滤,再利用五氯苯甲醚的反向变形进行再造。这种通用改进增加了比现行方法少的参数。对CIFAR-10-C和CIFAR-100-C的实验用2000参数的独特过滤法展示了我们方法的有效性和局限性。