We revisit the source image estimation problem from blind source separation (BSS). We generalize the traditional minimum distortion principle to maximum likelihood estimation with a model for the residual spectrograms. Because residual spectrograms typically contain other sources, we propose to use a mixed-norm model that lets us finely tune sparsity in time and frequency. We propose to carry out the minimization of the mixed-norm via majorization-minimization optimization, leading to an iteratively reweighted least-squares algorithm. The algorithm balances well efficiency and ease of implementation. We assess the performance of the proposed method as applied to two well-known determined BSS and one joint BSS-dereverberation algorithms. We find out that it is possible to tune the parameters to improve separation by up to 2 dB, with no increase in distortion, and at little computational cost. The method thus provides a cheap and easy way to boost the performance of blind source separation.
翻译:我们从盲源分离(BSS)中重新审视源图像估计问题。 我们从传统最低扭曲原则到最大可能性估算,使用残余光谱图模型。 由于残余光谱图通常包含其他来源, 我们提议使用混合的北温模型, 使我们在时间和频率上微调宽度。 我们提议通过大度- 最小化优化, 实现混合北温最小化, 从而实现迭代再加权最小方程算法。 算法平衡了良好的效率和执行的方便性。 我们评估了两种已知的BSS和一种联合BSS- 不同方位算法应用的拟议方法的性能。 我们发现可以调整参数, 以最多2 dB 来改进分离, 而不增加扭曲, 且计算成本很小。 因此, 这种方法提供了一种廉价和容易的方法, 来提升盲源分离的性能 。