Diffusion models have emerged as the state-of-the-art for image generation, among other tasks. Here, we present an efficient diffusion-based model for 3D-aware generation of neural fields. Our approach pre-processes training data, such as ShapeNet meshes, by converting them to continuous occupancy fields and factoring them into a set of axis-aligned triplane feature representations. Thus, our 3D training scenes are all represented by 2D feature planes, and we can directly train existing 2D diffusion models on these representations to generate 3D neural fields with high quality and diversity, outperforming alternative approaches to 3D-aware generation. Our approach requires essential modifications to existing triplane factorization pipelines to make the resulting features easy to learn for the diffusion model. We demonstrate state-of-the-art results on 3D generation on several object classes from ShapeNet.
翻译:传播模型已经作为图像生成的最先进技术出现, 包括其它任务。 在这里, 我们为 3D- 觉悟生成神经领域展示了一个高效的基于传播的模型。 我们的方法前处理培训数据, 如 ShapeNet meshes, 将其转换为连续占用场, 并将其纳入一系列轴对齐的三角形特征示意图。 因此, 我们的 3D 培训场景都由 2D 特性平面作为代表, 我们可以直接为这些表达形式培训现有的 2D 传播模型, 以生成 3D 高品质和多样性的 3D 神经领域, 超过 3D- 觉生成的替代方法 。 我们的方法需要对现有的三维因因子化管道进行基本修改, 以使由此生成的特征容易学习用于扩散模型。 我们展示了 3D 生成在来自 ShapeNet 的几个对象班子上的最新结果 。