We consider the Global Minimum Vertex-Cut problem: given an undirected vertex-weighted graph $G$, compute a minimum-weight subset of its vertices whose removal disconnects $G$. The problem is closely related to Global Minimum Edge-Cut, where the weights are on the graph edges instead of vertices, and the goal is to compute a minimum-weight subset of edges whose removal disconnects the graph. Global Minimum Cut is one of the most basic and extensively studied problems in combinatorial optimization and graph theory. While an almost-linear time algorithm was known for the edge version of the problem for awhile (Karger, STOC 1996 and J. ACM 2000), the fastest previous algorithm for the vertex version (Henzinger, Rao and Gabow, FOCS 1996 and J. Algorithms 2000) achieves a running time of $\tilde{O}(mn)$, where $m$ and $n$ denote the number of edges and vertices in the input graph, respectively. For the special case of unit vertex weights, this bound was broken only recently (Li {et al.}, STOC 2021); their result, combined with the recent breakthrough almost-linear time algorithm for Maximum $s$-$t$ Flow (Chen {et al.}, FOCS 2022, van den Brand {et al.}, FOCS 2023), yields an almost-linear time algorithm for Global Minimum Vertex-Cut with unit vertex weights. In this paper we break the $28$ years old bound of Henzinger {et al.} for the general weighted Global Minimum Vertex-Cut, by providing a randomized algorithm for the problem with running time $O(\min\{mn^{0.99+o(1)},m^{1.5+o(1)}\})$.
翻译:本文研究全局最小顶点割问题:给定一个无向顶点加权图$G$,计算其顶点的一个最小权值子集,移除该子集后$G$将不再连通。该问题与全局最小边割问题密切相关,后者的权值位于图的边上而非顶点上,目标是计算边的一个最小权值子集,移除这些边后图将不再连通。全局最小割是组合优化和图论中最基础且被广泛研究的问题之一。虽然边权版本问题早已存在近似线性时间算法(Karger, STOC 1996 与 J. ACM 2000),但顶点权版本的最快现有算法(Henzinger, Rao 与 Gabow, FOCS 1996 与 J. Algorithms 2000)仅能达到$\tilde{O}(mn)$的时间复杂度,其中$m$和$n$分别表示输入图的边数与顶点数。对于单位顶点权重的特殊情况,该时间界限直到最近才被突破(Li等人, STOC 2021);他们的结果结合近期最大$s$-$t$流问题的突破性近似线性时间算法(Chen等人, FOCS 2022, van den Brand等人, FOCS 2023),为具有单位顶点权重的全局最小顶点割问题提供了近似线性时间算法。本文通过提出一个运行时间为$O(\min\{mn^{0.99+o(1)},m^{1.5+o(1)}\})$的随机化算法,突破了Henzinger等人针对一般加权全局最小顶点割问题保持28年的时间复杂度界限。