We propose MonoSE(3)-Diffusion, a monocular SE(3) diffusion framework that formulates markerless, image-based robot pose estimation as a conditional denoising diffusion process. The framework consists of two processes: a visibility-constrained diffusion process for diverse pose augmentation and a timestep-aware reverse process for progressive pose refinement. The diffusion process progressively perturbs ground-truth poses to noisy transformations for training a pose denoising network. Importantly, we integrate visibility constraints into the process, ensuring the transformations remain within the camera field of view. Compared to the fixed-scale perturbations used in current methods, the diffusion process generates in-view and diverse training poses, thereby improving the network generalization capability. Furthermore, the reverse process iteratively predicts the poses by the denoising network and refines pose estimates by sampling from the diffusion posterior of current timestep, following a scheduled coarse-to-fine procedure. Moreover, the timestep indicates the transformation scales, which guide the denoising network to achieve more accurate pose predictions. The reverse process demonstrates higher robustness than direct prediction, benefiting from its timestep-aware refinement scheme. Our approach demonstrates improvements across two benchmarks (DREAM and RoboKeyGen), achieving a notable AUC of 66.75 on the most challenging dataset, representing a 32.3% gain over the state-of-the-art.


翻译:我们提出了MonoSE(3)-Diffusion,一种单目SE(3)扩散框架,将无标记、基于图像的机器人位姿估计表述为一个条件去噪扩散过程。该框架包含两个过程:一个用于多样化位姿增强的可见性约束扩散过程,以及一个用于渐进式位姿细化的时间步感知反向过程。扩散过程逐步扰动真实位姿,生成带噪声的变换用于训练位姿去噪网络。重要的是,我们将可见性约束整合到该过程中,确保变换始终保持在相机视野内。与现有方法中使用的固定尺度扰动相比,该扩散过程生成了视野内且多样化的训练位姿,从而提升了网络的泛化能力。此外,反向过程通过去噪网络迭代预测位姿,并遵循预定的由粗到细流程,从当前时间步的扩散后验分布中采样以细化位姿估计。同时,时间步指示了变换尺度,引导去噪网络实现更精确的位姿预测。得益于其时间步感知的细化方案,反向过程展现出比直接预测更高的鲁棒性。我们的方法在两个基准数据集(DREAM和RoboKeyGen)上均取得了性能提升,在最具挑战性的数据集上达到了66.75的显著AUC值,相比现有最优方法提升了32.3%。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员