State-of-the-art pretrained language models tend to perform below their capabilities when applied out-of-the-box on tasks that require reasoning over numbers. Recent work sees two main reasons for this: (1) popular tokenisation algorithms are optimized for common words, and therefore have limited expressiveness for numbers, and (2) common pretraining objectives do not target numerical reasoning or understanding numbers at all. Recent approaches usually address them separately and mostly by proposing architectural changes or pretraining models from scratch. In this paper, we propose a new extended pretraining approach called reasoning-aware pretraining to jointly address both shortcomings without requiring architectural changes or pretraining from scratch. Using contrastive learning, our approach incorporates an alternative number representation into an already pretrained model, while improving its numerical reasoning skills by training on a novel pretraining objective called inferable number prediction task. We evaluate our approach on three different tasks that require numerical reasoning, including (a) reading comprehension in the DROP dataset, (b) inference-on-tables in the InfoTabs dataset, and (c) table-to-text generation in WikiBio and SciGen datasets. Our results on DROP and InfoTabs show that our approach improves the accuracy by 9.6 and 33.9 points on these datasets, respectively. Our human evaluation on SciGen and WikiBio shows that our approach improves the factual correctness on all datasets.


翻译:最先进的预先培训语言模式往往在应用需要推理数字的任务时表现低于其能力。最近的工作发现两个主要原因:(1) 大众化象征性算法为通用词优化,因此对数字的表达性有限,而共同的预培训目标并不针对数字推理或理解数字。最近的方法通常单独解决它们,而且大多从零开始提出建筑改变或培训前的模式。在本文中,我们提议了一个新的扩大的培训前方法,称为推理意识预培训,以联合解决这两个缺陷,而无需从零开始对建筑进行修改或预培训。我们的方法采用对比学习,将替代数字代表纳入已经预先培训的模式,同时通过培训新颖的预培训目标(即可推断数字预测任务)提高数字推理技能。我们评估了三种不同任务的方法,需要从数字推理,包括:(a) 阅读DROP数据集的理解,(b) InfoTabs数据集中的推论,以及(c) WikiB 和 SciG.9信息技术中的表格生成,分别显示我们的数据和SDIG的准确性。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年6月30日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员