An important open question in the area of vertex sparsification is whether $(1+\epsilon)$-approximate cut-preserving vertex sparsifiers with size close to the number of terminals exist. The work Chalermsook et al. (SODA 2021) introduced a relaxation called connectivity-$c$ mimicking networks, which asks to construct a vertex sparsifier which preserves connectivity among $k$ terminals exactly up to the value of $c$, and showed applications to dynamic connectivity data structures and survivable network design. We show that connectivity-$c$ mimicking networks with $\widetilde{O}(kc^3)$ edges exist and can be constructed in polynomial time in $n$ and $c$, improving over the results of Chalermsook et al. (SODA 2021) for any $c \ge \log n$, whose runtimes depended exponentially on $c$.


翻译:在顶端封闭化领域,一个重要的未决问题是,是否存在面积接近终端数目的“Calermsook”等工作(SODA 2021)引入了所谓的连通-美元模拟网络的放松,该工作要求建造一个顶端封闭器,使美元终端的连通性保持准确到c$的值,并显示对动态连接数据结构和可生存网络设计的应用。我们显示,连接-美元模拟网络存在并可以以美元和美元建造,比Chalermsook等人(SODA 2021)的任何运行时间指数取决于C$的“美元”和“美元”(SODADA 2021)的结果有所改进。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【ICLR 2019】双曲注意力网络,Hyperbolic  Attention Network
专知会员服务
83+阅读 · 2020年6月21日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
R文本分类之RTextTools
R语言中文社区
4+阅读 · 2018年1月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月9日
Arxiv
0+阅读 · 2021年3月8日
Arxiv
0+阅读 · 2021年3月8日
Arxiv
0+阅读 · 2021年3月5日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
R文本分类之RTextTools
R语言中文社区
4+阅读 · 2018年1月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员