Generative Adversarial Networks (GANs) have shown compelling results in various tasks and applications in recent years. However, mode collapse remains a critical problem in GANs. In this paper, we propose a novel training pipeline to address the mode collapse issue of GANs. Different from existing methods, we propose to generalize the discriminator as feature embedding, and maximize the entropy of distributions in the embedding space learned by the discriminator. Specifically, two regularization terms, i.e.Deep Local Linear Embedding (DLLE) and Deep Isometric feature Mapping (DIsoMap), are designed to encourage the discriminator to learn the structural information embedded in the data, such that the embedding space learned by the discriminator can be well formed. Based on the well-learned embedding space supported by the discriminator, a non-parametric entropy estimator is designed to efficiently maximize the entropy of embedding vectors, playing as an approximation of maximizing the entropy of the generated distribution. Through improving the discriminator and maximizing the distance of the most similar samples in the embedding space, our pipeline effectively reduces the mode collapse without sacrificing the quality of generated samples. Extensive experimental results show the effectiveness of our method which outperforms the GAN baseline, MaF-GAN on CelebA (9.13 vs. 12.43 in FID) and surpasses the recent state-of-the-art energy-based model on the ANIME-FACE dataset (2.80 vs. 2.26 in Inception score).
翻译:近几年来,在各种任务和应用中,模式崩溃仍然是GAN的关键问题。在本文中,我们提议建立一个新的培训管道,以解决GAN的模式崩溃问题。与现有方法不同,我们提议将歧视者普遍化为特性嵌入,并最大限度地扩大歧视者所学到的嵌入空间的分布。具体地说,两个正规化条件,即Deep local Linear Embedding (DLLE) 和深测特征映射(DIsoMap),旨在鼓励歧视者学习数据中所含的结构信息,这样就可以很好地形成歧视者所学的嵌入空间。基于歧视者所支持的扎实的嵌入空间,一个非参数估测算器旨在有效地最大限度地扩大嵌入模型矢量的酶,从而尽可能扩大所产生分布的比值(DIsoMap),目的是鼓励歧视者学习数据中嵌入的结构性信息,这样就可以很好地形成一个植入式的GA型系统(GG-MAF) 模型的最新结果样本的距离。