Biometric recognition is used across a variety of applications from cyber security to border security. Recent research has focused on ensuring biometric performance (false negatives and false positives) is fair across demographic groups. While there has been significant progress on the development of metrics, the evaluation of the performance across groups, and the mitigation of any problems, there has been little work incorporating statistical variation. This is important because differences among groups can be found by chance when no difference is present. In statistics this is called a Type I error. Differences among groups may be due to sampling variation or they may be due to actual difference in system performance. Discriminating between these two sources of error is essential for good decision making about fairness and equity. This paper presents two novel statistical approaches for assessing fairness across demographic groups. The first methodology is a bootstrapped-based hypothesis test, while the second is simpler test methodology focused upon non-statistical audience. For the latter we present the results of a simulation study about the relationship between the margin of error and factors such as number of subjects, number of attempts, correlation between attempts, underlying false non-match rates(FNMR's), and number of groups.


翻译:从网络安全到边境安全的各种应用都采用了生物识别方法。最近的研究侧重于确保生物鉴别性能(假阴性和假正数)在人口群体之间是公平的。虽然在制订衡量标准、评估跨群体业绩和减轻任何问题方面取得了显著进展,但几乎没有纳入统计差异的工作。这很重要,因为当不存在差异时,群体间的差异是偶然发现的。在统计中,这被称为类型I错误。各群体间的差异可能是由于抽样差异或系统性能的实际差异所致。区分这两个错误来源对于就公平和公平问题作出良好决策至关重要。本文件介绍了两种新的统计方法,用以评估各人口群体之间的公平性。第一种方法是基于布置的假设测试,而第二种方法是侧重于非统计受众的更简单测试方法。对于后者,我们介绍了关于误差幅度与诸如主题数量、尝试次数、尝试之间的相关性、误差非匹配率基础(NIMMRs)和群体数目等因素之间的关系的模拟研究的结果。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
专知会员服务
44+阅读 · 2020年10月31日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月4日
Arxiv
0+阅读 · 2022年9月30日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员