The paper focuses on collision-inclusive motion planning for impact-resilient mobile robots. We propose a new deformation recovery and replanning strategy to handle collisions that may occur at run-time. Contrary to collision avoidance methods that generate trajectories only in conservative local space or require collision checking that has high computational cost, our method directly generates (local) trajectories with imposing only waypoint constraints. If a collision occurs, our method then estimates the post-impact state and computes from there an intermediate waypoint to recover from the collision. To achieve so, we develop two novel components: 1) a deformation recovery controller that optimizes the robot's states during post-impact recovery phase, and 2) a post-impact trajectory replanner that adjusts the next waypoint with the information from the collision for the robot to pass through and generates a polynomial-based minimum effort trajectory. The proposed strategy is evaluated experimentally with an omni-directional impact-resilient wheeled robot. The robot is designed in house, and it can perceive collisions with the aid of Hall effect sensors embodied between the robot's main chassis and a surrounding deflection ring-like structure.
翻译:本文侧重于对具有撞击抗御力的移动机器人进行包含碰撞的动作规划。 我们提出一个新的变形恢复和再规划策略,以应对在运行时可能出现的碰撞。 与仅在保守的地方空间产生轨迹或要求进行计算成本高的碰撞检查的避免碰撞方法相反,我们的方法直接产生(当地)轨迹,只施加路径限制。 如果碰撞发生,我们的方法然后估计撞击后状态,并从那里计算一个中间路点,以便从碰撞中恢复过来。为了实现这一点,我们开发了两个新颖的部件:1)一个在撞击后恢复阶段优化机器人状态的变形恢复控制器,以及2)一个影响后轨迹再规划器,根据机器人碰撞后经过的信息调整下一个路点,并生成一个基于多角度的最低努力轨迹。 如果发生碰撞,我们的方法随后对撞击后状态进行估算,并从那里计算出一个中间路点,以便从碰撞中恢复过来。 为了实现这一点,我们开发了两个新的部件:1)一个变形恢复控制器,在撞击后阶段优化了机器人状态,使机器人的状态优化了机器人的状态;以及2)一个影响后轨道再感应感应力感波传感器在机器人主形结构之间形成的波变器。