For scientific knowledge to be findable, accessible, interoperable, and reusable, it needs to be machine-readable. Moving forward from post-publication extraction of knowledge, we adopted a pre-publication approach to write research findings in a machine-readable format at early stages of data analysis. For this purpose, we developed the package dtreg in Python and R. Registered and persistently identified data types, aka schemata, which dtreg applies to describe data analysis in a machine-readable format, cover the most widely used statistical tests and machine learning methods. The package supports (i) downloading a relevant schema as a mutable instance of a Python or R class, (ii) populating the instance object with metadata about data analysis, and (iii) converting the object into a lightweight Linked Data format. This paper outlines the background of our approach, explains the code architecture, and illustrates the functionality of dtreg with a machine-readable description of a t-test on Iris Data. We suggest that the dtreg package can enhance the methodological repertoire of researchers aiming to adhere to the FAIR principles.
翻译:为使科学知识具备可发现性、可访问性、互操作性和可重用性,其必须以机器可读的形式呈现。为超越传统在发表后提取知识的模式,我们采用了一种预发表方法,在数据分析的早期阶段即以机器可读格式记录研究成果。为此,我们开发了适用于Python和R的dtreg软件包。该包通过注册并持久标识的数据类型(即模式)以机器可读格式描述数据分析,这些模式涵盖了最广泛使用的统计检验和机器学习方法。该软件包支持以下功能:(i)下载相关模式作为Python或R类的可变实例;(ii)用数据分析的元数据填充实例对象;(iii)将对象转换为轻量级关联数据格式。本文概述了该方法的背景,解释了代码架构,并通过鸢尾花数据集t检验的机器可读描述示例展示了dtreg的功能。我们认为dtreg软件包能够丰富研究人员遵循FAIR原则的方法工具箱。