Histopathological characterization of colorectal polyps allows to tailor patients' management and follow up with the ultimate aim of avoiding or promptly detecting an invasive carcinoma. Colorectal polyps characterization relies on the histological analysis of tissue samples to determine the polyps malignancy and dysplasia grade. Deep neural networks achieve outstanding accuracy in medical patterns recognition, however they require large sets of annotated training images. We introduce UniToPatho, an annotated dataset of 9536 hematoxylin and eosin (H&E) stained patches extracted from 292 whole-slide images, meant for training deep neural networks for colorectal polyps classification and adenomas grading. We present our dataset and provide insights on how to tackle the problem of automatic colorectal polyps characterization.
翻译:对直肠切片的生理病理学定性使得病人能够调整管理,并采取后续行动,最终目的是避免或迅速发现侵袭性肿瘤。直肠切片特征取决于组织样本的生理分析,以确定多胞胎恶性细胞和变性等级。深神经网络在医学模式识别方面达到了极佳的准确性,然而,它们需要大量的附加说明的培训图像。我们引入了UniToPatho,这是一个由9536位乙氧素和埃索因(H&E)相片提取的附加说明的数据集,由9536位全状细胞相片和埃索因(H&E)相片组成,用于培训深神经网络进行色切切多胞和腺瘤分类。我们介绍我们的数据集,并就如何解决自动断层多胞特征鉴定问题提供见解。