Cameras are the primary sensor in automated driving systems. They provide high information density and are optimal for detecting road infrastructure cues laid out for human vision. Surround-view camera systems typically comprise of four fisheye cameras with 190{\deg}+ field of view covering the entire 360{\deg} around the vehicle focused on near-field sensing. They are the principal sensors for low-speed, high accuracy, and close-range sensing applications, such as automated parking, traffic jam assistance, and low-speed emergency braking. In this work, we provide a detailed survey of such vision systems, setting up the survey in the context of an architecture that can be decomposed into four modular components namely Recognition, Reconstruction, Relocalization, and Reorganization. We jointly call this the 4R Architecture. We discuss how each component accomplishes a specific aspect and provide a positional argument that they can be synergized to form a complete perception system for low-speed automation. We support this argument by presenting results from previous works and by presenting architecture proposals for such a system. Qualitative results are presented in the video at https://youtu.be/ae8bCOF77uY.


翻译:相机是自动驾驶系统中的主要传感器。 相机提供高信息密度,是探测人类视觉所设定的道路基础设施提示的最佳方法。 环视相机系统通常由四台鱼眼摄像机组成, 其视野范围为190=deg ⁇ - 视野范围覆盖车辆周围以近地遥感为重点的整个360=deg} 360=deg} 。 这些摄像机是低速、高精度和近距离遥感应用的主要传感器, 如自动停车、 交通阻塞协助和低速紧急制动。 在这项工作中, 我们提供对这些视像系统的详细调查, 在可分解成四个模块组件的结构( 识别、 重建、 重新定位和重新组织) 的背景下建立勘测。 我们共同称之为4R 结构。 我们讨论每个组件如何完成一个具体方面, 并提供定位参数, 即它们可以同步形成一个完整的低速自动化感知系统。 我们通过介绍以往工作的结果和提出这种系统的架构建议来支持这一论点。 在 https://yoututo.be/ae8Fe77- uuuuu 的视频中展示了定性结果。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Arxiv
12+阅读 · 2021年6月21日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
Arxiv
5+阅读 · 2018年10月4日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Top
微信扫码咨询专知VIP会员