Cameras are the primary sensor in automated driving systems. They provide high information density and are optimal for detecting road infrastructure cues laid out for human vision. Surround-view camera systems typically comprise of four fisheye cameras with 190{\deg}+ field of view covering the entire 360{\deg} around the vehicle focused on near-field sensing. They are the principal sensors for low-speed, high accuracy, and close-range sensing applications, such as automated parking, traffic jam assistance, and low-speed emergency braking. In this work, we provide a detailed survey of such vision systems, setting up the survey in the context of an architecture that can be decomposed into four modular components namely Recognition, Reconstruction, Relocalization, and Reorganization. We jointly call this the 4R Architecture. We discuss how each component accomplishes a specific aspect and provide a positional argument that they can be synergized to form a complete perception system for low-speed automation. We support this argument by presenting results from previous works and by presenting architecture proposals for such a system. Qualitative results are presented in the video at https://youtu.be/ae8bCOF77uY.
翻译:相机是自动驾驶系统中的主要传感器。 相机提供高信息密度,是探测人类视觉所设定的道路基础设施提示的最佳方法。 环视相机系统通常由四台鱼眼摄像机组成, 其视野范围为190=deg ⁇ - 视野范围覆盖车辆周围以近地遥感为重点的整个360=deg} 360=deg} 。 这些摄像机是低速、高精度和近距离遥感应用的主要传感器, 如自动停车、 交通阻塞协助和低速紧急制动。 在这项工作中, 我们提供对这些视像系统的详细调查, 在可分解成四个模块组件的结构( 识别、 重建、 重新定位和重新组织) 的背景下建立勘测。 我们共同称之为4R 结构。 我们讨论每个组件如何完成一个具体方面, 并提供定位参数, 即它们可以同步形成一个完整的低速自动化感知系统。 我们通过介绍以往工作的结果和提出这种系统的架构建议来支持这一论点。 在 https://yoututo.be/ae8Fe77- uuuuu 的视频中展示了定性结果。