In this paper, considering the balance of data/model privacy of model owners and user needs, we propose a new setting called Back-Propagated Black-Box Adaptation (BPBA) for users to better train their private models via the guidance of the back-propagated results of a Black-box foundation/source model. Our setting can ease the usage of foundation/source models as well as prevent the leakage and misuse of foundation/source models. Moreover, we also propose a new training strategy called Bootstrap The Original Latent (BTOL) to fully utilize the foundation/source models. Our strategy consists of a domain adapter and a freeze-and-thaw strategy. We apply our BTOL under BPBA and Black-box UDA settings on three different datasets. Experiments show that our strategy is efficient and robust in various settings without manual augmentations.


翻译:---- 机器翻译的中文摘要:本文针对模型所有者的数据/模型隐私平衡和用户需求提出了一种新的设置,称为反向传播的黑盒适应(BPBA),用户可以通过黑盒基础/源模型的反向传播结果指导更好地训练私有模型。 我们的设置可以简化使用基础/源模型的方法,并防止泄漏和滥用。 此外,我们还提出了一种新的训练策略,称为Bootstrap原始潜在因素(BTOL),旨在充分利用基础/源模型。 我们的策略包括域适配器和冻结解冻策略。 我们在三个不同的数据集上应用了BPBA和Black-box UDA下的BTOL。实验证明,我们的策略在各种设置中均高效且鲁棒,无需手动增强。

0
下载
关闭预览

相关内容

在科学,计算和工程学中,黑盒是一种设备,系统或对象,可以根据其输入和输出(或传输特性)对其进行查看,而无需对其内部工作有任何了解。 它的实现是“不透明的”(黑色)。 几乎任何事物都可以被称为黑盒:晶体管,引擎,算法,人脑,机构或政府。为了使用典型的“黑匣子方法”来分析建模为开放系统的事物,仅考虑刺激/响应的行为,以推断(未知)盒子。 该黑匣子系统的通常表示形式是在该方框中居中的数据流程图。黑盒的对立面是一个内部组件或逻辑可用于检查的系统,通常将其称为白盒(有时也称为“透明盒”或“玻璃盒”)。
【CVPR2023】基于强化学习的黑盒模型反演攻击
专知会员服务
24+阅读 · 2023年4月12日
专知会员服务
90+阅读 · 2021年6月29日
专知会员服务
20+阅读 · 2021年5月4日
专知会员服务
48+阅读 · 2020年10月20日
浅聊对比学习(Contrastive Learning)第一弹
PaperWeekly
0+阅读 · 2022年6月10日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月23日
Arxiv
0+阅读 · 2023年5月23日
Arxiv
0+阅读 · 2023年5月19日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员