With a good code search engine, developers can reuse existing code snippets and accelerate software development process. Current code search methods can be divided into two categories: traditional information retrieval (IR) based and deep learning (DL) based approaches. DL-based approaches include the cross-encoder paradigm and the bi-encoder paradigm. However, both approaches have certain limitations. The inference of IR-based and bi-encoder models are fast, however, they are not accurate enough; while cross-encoder models can achieve higher search accuracy but consume more time. In this work, we propose TOSS, a two-stage fusion code search framework that can combine the advantages of different code search methods. TOSS first uses IR-based and bi-encoder models to efficiently recall a small number of top-k code candidates, and then uses fine-grained cross-encoders for finer ranking. Furthermore, we conduct extensive experiments on different code candidate volumes and multiple programming languages to verify the effectiveness of TOSS. We also compare TOSS with six data fusion methods. Experimental results show that TOSS is not only efficient, but also achieves state-of-the-art accuracy with an overall mean reciprocal ranking (MRR) score of 0.763, compared to the best baseline result on the CodeSearchNet benchmark of 0.713.


翻译:使用良好的代码搜索引擎,开发者可以重新使用现有的代码片断并加速软件开发进程。当前的代码搜索方法可以分为两类:传统的基于信息检索(IR)和基于深层次学习(DL)的方法。基于 DL 的方法包括跨编码模式和双编码模式。但是,这两种方法都有一定的局限性。基于IR和双编码模型的推论速度很快,但是它们不够准确;交叉编码模型可以达到更高的搜索准确度,但消耗的时间也更多。在这项工作中,我们建议采用TOSS,一个两阶段的聚合代码搜索框架,可以将不同代码搜索方法的优势结合起来。TOSS首先使用基于IR和双编码的模型,以便有效地回顾少量顶级代码候选人,然后使用精细的跨编码器和双编码模型来进行更精确的排序。此外,我们还对不同的代码候选卷和多种编程语言进行了广泛的实验,以核实TROS的有效性。我们还将TOSS与六种数据融合方法进行了比较。实验结果显示,TRS13 实验结果与最高代码排序比对最高标准,还实现了最高水平。</s>

0
下载
关闭预览

相关内容

代码(Code)是专知网的一个重要知识资料文档板块,旨在整理收录论文源代码、复现代码,经典工程代码等,便于用户查阅下载使用。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月28日
Arxiv
0+阅读 · 2023年4月27日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
13+阅读 · 2021年3月3日
Arxiv
20+阅读 · 2020年6月8日
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员