Federated learning (FL) is a privacy-preserving machine learning paradigm that enables collaborative training among geographically distributed and heterogeneous users without gathering their data. Extending FL beyond the conventional supervised learning paradigm, federated Reinforcement Learning (RL) was proposed to handle sequential decision-making problems for various privacy-sensitive applications such as autonomous driving. However, the existing federated RL algorithms directly combine model-free RL with FL, and thus generally have high sample complexity and lack theoretical guarantees. To address the above challenges, we propose a new federated RL algorithm that incorporates model-based RL and ensemble knowledge distillation into FL. Specifically, we utilise FL and knowledge distillation to create an ensemble of dynamics models from clients, and then train the policy by solely using the ensemble model without interacting with the real environment. Furthermore, we theoretically prove that the monotonic improvement of the proposed algorithm is guaranteed. Extensive experimental results demonstrate that our algorithm obtains significantly higher sample efficiency compared to federated model-free RL algorithms in the challenging continuous control benchmark environments. The results also show the impact of non-IID client data and local update steps on the performance of federated RL, validating the insights obtained from our theoretical analysis.


翻译:联邦学习(FL)是一种保护隐私的机器学习模式,它使得地理分布分散和不同用户在不收集数据的情况下能够进行合作培训。 将FL扩大到常规监管的学习模式之外,联邦强化学习(RL)建议处理各种隐私敏感应用(如自主驾驶)的顺序决策问题,然而,现有的Federate RL算法直接将无模式RL与FL结合起来,因此一般具有高样本复杂性,缺乏理论保障。 为了应对上述挑战,我们提议一种新的联合RL算法,将基于模型的RL和混合知识蒸馏纳入FL。 具体地说,我们利用FL和知识蒸馏法从客户那里创建动态模型的集合,然后仅通过使用联合模型来培训政策,而不与实际环境互动。此外,我们理论上证明,拟议的算法的单一式改进是有保障的。 广泛的实验结果表明,我们的算法比在具有挑战性的连续控制基准环境中以无模型化的RL算法和混合知识蒸馏法获得更高的样本效率。我们利用FL和知识蒸馏法来创建客户模型的模型分析结果,还显示我们没有实际的深入分析结果。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
88+阅读 · 2020年12月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
深度强化学习策略梯度教程,53页ppt
专知会员服务
179+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年11月2日
Arxiv
0+阅读 · 2021年11月1日
Arxiv
0+阅读 · 2021年10月29日
Arxiv
7+阅读 · 2018年12月26日
VIP会员
相关VIP内容
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员