Finding the k-medianin a network involves identifying a subset of k vertices that minimize the total distance to all other vertices in a graph. This problem has been extensively studied in computer science, graph theory, operations research, and numerous areas due to its significance in a wide range of applications. While known to be computationally challenging (NP-hard) several approximation algorithms have been proposed, most with high-order polynomial-time complexity. However, the graph topology of complex networks with heavy-tailed degree distributions present characteristics that can be exploited to yield custom-tailored algorithms. We compare eight algorithms specifically designed for complex networks and evaluate their performance based on accuracy and efficiency for problems of varying sizes and application areas. Rather than relying on a small number of problems, we conduct over 16,000 experiments covering a wide range of network sizes and k-median{} values. While individual results vary, a few methods provide consistently good results. We draw general conclusions about how algorithms perform in practice and provide general guidelines for solutions.
翻译:暂无翻译