In this work, we design an efficient mixed-protocol framework, Tetrad, with applications to privacy-preserving machine learning. It is designed for the four-party setting with at most one active corruption and supports rings. Our fair multiplication protocol requires communicating only 5 ring elements improving over the state-of-the-art protocol of Trident (Chaudhari et al. NDSS'20). The technical highlights of Tetrad include efficient (a) truncation without any overhead, (b) multi-input multiplication protocols for arithmetic and boolean worlds, (c) garbled-world, tailor-made for the mixed-protocol framework, and (d) conversion mechanisms to switch between the computation styles. The fair framework is also extended to provide robustness without inflating the costs. The competence of Tetrad is tested with benchmarks for deep neural networks such as LeNet and VGG16 and support vector machines. One variant of our framework aims at minimizing the execution time, while the other focuses on the monetary cost. We observe improvements up to 6x over Trident across these parameters.
翻译:在这项工作中,我们设计了一个高效的混合议定书框架(Tetrad),用于保护隐私的机器学习;它设计为四方设置,最多有一个活跃的腐败和支撑环;我们公平的倍增协议要求仅交流5个环元素,比三叉戟的最新协议(Chaudhari等人,NDSS'20)有所改进;Tetrad的技术要点包括(a) 高效的脱节,没有任何间接费用;(b) 计算和布林世界的多投入倍增协议,(c) 混合议定书框架特制的悬浮世界,以及(d) 转换机制,以在计算样式之间转换。公平框架还扩展,以提供稳健性,而不会使成本膨胀。Tetrad的能力通过诸如LeNet和VGG16等深神经网络的基准测试,以及支持矢量机器。我们框架的一个变式旨在最大限度地减少执行时间,而另一个则侧重于货币成本。我们观察到在这些参数上改进到6x高于三叉。