We study the formal theory of monads, as developed by Street, in univalent foundations. This allows us to formally reason about various kinds of monads on the right level of abstraction. In particular, we define the bicategory of monads internal to a bicategory, and prove its univalence. We also define Eilenberg-Moore objects, and we show that both Eilenberg-Moore categories and Kleisli categories give rise to Eilenberg-Moore objects. Finally, we relate monads and adjunctions in arbitrary bicategories. Our work is formalized in Coq using the UniMath library.
翻译:我们研究由街头开发的、以普通基础为基础的正式的寺院理论,这使我们能够在正确的抽象层面正式解释各种寺院。特别是,我们把寺院的二类定义为二类,并证明它的独一性。我们还定义了艾伦堡-摩尔天体,我们证明艾伦堡-摩尔天体和克莱斯利天体都产生了艾伦堡-摩尔天体。最后,我们把寺院和修道院与任意的两类相提并论。我们的工作在科克通过UnionMath图书馆正式化。